Claudio Gentili
*c.gentili@unipd.it
Department of General Psychology, University of Padua, Padova, Italy
Abstract
Despite major depression is a raising and wide spread health problem, the knowledge about its biological bases is limited. This not only has consequences epistemologically speaking, but also has clinical implications. However, considering the whole literature on biological bases of depression, it seems that a precise or unique biological marker enough specific and sensible to be used in clinical practice or to better understand the psychopathology of the disorder is not available and research has produced highly heterogeneous results. Moreover, the studied markers are often assessed with expensive and not commonly available techniques, limiting their possible application in clinical routine.
Here we hypothesize that the emerging clinical and biological heterogeneity mainly reflect the fact that depression, as most of psychiatric disorders, is not a unique condition, but the sum of different entities with similar symptoms. Such entities may rely on different and only partially overlapping biological features.
Therefore, rather, than continue to invest on highly inconsistent studies, we sustained the necessity of a shift in the study paradigm. Namely, future researches may focus on a bottom-up approach considering patients with homogeneous biological markers and evaluating whether these markers correspond to precise clinical features. Unsupervised supported vector machines and other data driven approaches may represent the best tool for such type of research. Pursuing the idea of a clinical exploitation of this type of research we also considered markers derived from electrocardiography (like the heart rate variability) the most promising given the relatively low cost, simplicity and availability of this technique.
Keywords: Mood disorders, Heart Rate Variability, Learning algorithms, Neurobiology, Psychophysiology
Published online: 2017/09/01
Published print: 2017/09/01
References
aan het Rot, M., Hogenelst, K., & Schoevers, R. A. (2012). Mood disorders in everyday life: a systematic review of experience sampling and ecological momentary assessment studies. Clin Psychol Rev, 32(6), 510-523. doi: 10.1016/j.cpr.2012.05.007
Acharya, U. R., Joseph, K. P., Kannathal, N., Lim, C. M., & Suri, J. S. (2006). Heart rate variability: a review. Medical and biological engineering and computing, 44(12), 1031-1051.
Alvares, G. A., Quintana, D. S., Hickie, I. B., & Guastella, A. J. (2016). Autonomic nervous system dysfunction in psychiatric disorders and the impact of psychotropic medications: a systematic review and meta-analysis. J Psychiatry Neurosci, 41(2), 89-104.
American Psychiatric, A., & American Psychiatric Association, D. S. M. T. F. (2013). Diagnostic and statistical manual of mental disorders : DSM-5. Washington, D.C.: American Psychiatric Association %W 17665776 %@ 9780890425541 (hardcover alk. paper) 9780890425558 (pbk. alk. paper).
Arnone, D., Job, D., Selvaraj, S., Abe, O., Amico, F., Cheng, Y., . . . McIntosh, A. M. (2016). Computational meta-analysis of statistical parametric maps in major depression. Hum Brain Mapp, 37(4), 1393-1404. doi: 10.1002/hbm.23108
Aubert, A. E., Vandeput, S., Beckers, F., Liu, J., Verheyden, B., & Van Huffel, S. (2009). Complexity of cardiovascular regulation in small animals. Philos Trans A Math Phys Eng Sci, 367(1892), 1239-1250. doi: 10.1098/rsta.2008.0276
Azam, M. A., Katz, J., Fashler, S. R., Changoor, T., Azargive, S., & Ritvo, P. (2015). Heart rate variability is enhanced in controls but not maladaptive perfectionists during brief mindfulness meditation following stress-induction: A stratified-randomized trial. Int J Psychophysiol. doi: 10.1016/j.ijpsycho.2015.06.005
Baert, S., De Raedt, R., Schacht, R., & Koster, E. H. (2010). Attentional bias training in depression: therapeutic effects depend on depression severity. J Behav Ther Exp Psychiatry, 41(3), 265-274. doi: 10.1016/j.jbtep.2010.02.004
Beck, A. T. (2005). The current state of cognitive therapy: a 40-year retrospective. Arch Gen Psychiatry, 62(9), 953-959. doi: 10.1001/archpsyc.62.9.953
Berry, S. M., Broglio, K., Bunker, M., Jayewardene, A., Olin, B., & Rush, A. J. (2013). A patient-level meta-analysis of studies evaluating vagus nerve stimulation therapy for treatment-resistant depression. Med Devices (Auckl), 6, 17-35. doi: 10.2147/mder.s41017
Bosaipo, N. B., Foss, M. P., Young, A. H., & Juruena, M. F. (2017). Neuropsychological changes in melancholic and atypical depression: A systematic review. Neuroscience and Biobehavioral Reviews, 73, 309-325.
Brakowski, J., Spinelli, S., Dorig, N., Bosch, O. G., Manoliu, A., Holtforth, M. G., & Seifritz, E. (2017). Resting state brain network function in major depression – Depression symptomatology, antidepressant treatment effects, future research. J Psychiatr Res, 92, 147-159. doi: 10.1016/j.jpsychires.2017.04.007
Chamberlain, S. R., & Sahakian, B. J. (2006). The neuropsychology of mood disorders. Curr Psychiatry Rep, 8(6), 458-463.
Cheng, P., Preston, S. D., Jonides, J., Mohr, A. H., Thummala, K., Casement, M., . . . Deldin, P. J. (2015). Evidence against mood-congruent attentional bias in Major Depressive Disorder. Psychiatry Res, 230(2), 496-505. doi: 10.1016/j.psychres.2015.09.043
Cimpianu, C. L., Strube, W., Falkai, P., Palm, U., & Hasan, A. (2017). Vagus nerve stimulation in psychiatry: a systematic review of the available evidence. J Neural Transm (Vienna), 124(1), 145-158. doi: 10.1007/s00702-016-1642-2
Cristea, I. A., Huibers, M. J., David, D., Hollon, S. D., Andersson, G., & Cuijpers, P. (2015). The effects of cognitive behavior therapy for adult depression on dysfunctional thinking: A meta-analysis. Clin Psychol Rev, 42, 62-71. doi: 10.1016/j.cpr.2015.08.003
Cristea, I. A., Kok, R. N., & Cuijpers, P. (2015). Efficacy of cognitive bias modification interventions in anxiety and depression: meta-analysis. Br J Psychiatry, 206(1), 7-16. doi: 10.1192/bjp.bp.114.146761
Cristea, I. A., Valenza, G., Scilingo, E. P., Szentagotai Tatar, A., Gentili, C., & David, D. (2014). Autonomic effects of cognitive reappraisal and acceptance in social anxiety: evidence for common and distinct pathways for parasympathetic reactivity. J Anxiety Disord, 28(8), 795-803. doi: 10.1016/j.janxdis.2014.09.009
Cuijpers, P. (2016). Are all psychotherapies equally effective in the treatment of adult depression? The lack of statistical power of comparative outcome studies. Evid Based Ment Health, 19(2), 39-42. doi: 10.1136/eb-2016-102341
Cuijpers, P., Cristea, I. A., Karyotaki, E., Reijnders, M., & Huibers, M. J. (2016). How effective are cognitive behavior therapies for major depression and anxiety disorders? A meta-analytic update of the evidence. World Psychiatry, 15(3), 245-258. doi: 10.1002/wps.20346
Cuthbert, B. N., & Insel, T. R. (2013). Toward the future of psychiatric diagnosis: the seven pillars of RDoC. BMC Med, 11, 126. doi: 10.1186/1741-7015-11-126
Drevets, W. C. (2000). Functional anatomical abnormalities in limbic and prefrontal cortical structures in major depression. Prog Brain Res, 126, 413-431. doi: 10.1016/s0079-6123(00)26027-5
Everaert, J., Koster, E. H., & Derakshan, N. (2012). The combined cognitive bias hypothesis in depression. Clin Psychol Rev, 32(5), 413-424. doi: 10.1016/j.cpr.2012.04.003
Ferrari, A. J., Charlson, F. J., Norman, R. E., Patten, S. B., Freedman, G., Murray, C. J. L., . . . Whiteford, H. A. (2013). Burden of depressive disorders by country, sex, age, and year: findings from the global burden of disease study 2010. PLoS Med, 10(11), e1001547. doi: 10.1371/journal.pmed.1001547
Garrett, A., & Chang, K. (2008). The role of the amygdala in bipolar disorder development. Dev Psychopathol, 20(4), 1285-1296. doi: 10.1017/s0954579408000618
Gentili, C., Cristea, I. A., Angstadt, M., Klumpp, H., Tozzi, L., Phan, K. L., & Pietrini, P. (2016). Beyond emotions: A meta-analysis of neural response within face processing system in social anxiety. Exp Biol Med (Maywood), 241(3), 225-237. doi: 10.1177/1535370215603514
Gentili, C., Cristea, I. A., Ricciardi, E., Vanello, N., Popita, C., David, D., & Pietrini, P. (2017). Not in one metric: Neuroticism modulates different resting state metrics within distinctive brain regions. Behavioural Brain Research, 327, 34-43.
Gentili, C., Messerotti Benvenuti, S., Palomba, D., Greco, A., Scilingo, E. P., & Valenza, G. (2017). Assessing mood symptoms through heartbeat dynamics: An HRV study on cardiosurgical patients. J Psychiatr Res, 95, 179-188. doi: 10.1016/j.jpsychires.2017.08.018
Gentili, C., Valenza, G., Nardelli, M., Lanata, A., Bertschy, G., Weiner, L., . . . Pietrini, P. (2017). Longitudinal monitoring of heartbeat dynamics predicts mood changes in bipolar patients: A pilot study. J Affect Disord, 209, 30-38. doi: 10.1016/j.jad.2016.11.008
Goldstein, D. S., Bentho, O., Park, M. Y., & Sharabi, Y. (2011). Low‐frequency power of heart rate variability is not a measure of cardiac sympathetic tone but may be a measure of modulation of cardiac autonomic outflows by baroreflexes. Experimental physiology, 96(12), 1255-1261.
Henry, B. L., Minassian, A., Paulus, M. P., Geyer, M. A., & Perry, W. (2010). Heart rate variability in bipolar mania and schizophrenia. J Psychiatr Res, 44(3), 168-176. doi: 10.1016/j.jpsychires.2009.07.011
Insel, T., Cuthbert, B., Garvey, M., Heinssen, R., Pine, D. S., Quinn, K., . . . Wang, P. (2010). Research domain criteria (RDoC): toward a new classification framework for research on mental disorders. Am J Psychiatry, 167(7), 748-751. doi: 10.1176/appi.ajp.2010.09091379
Irle, E., Ruhleder, M., Lange, C., Seidler-Brandler, U., Salzer, S., Dechent, P., . . . Leichsenring, F. (2010). Reduced amygdalar and hippocampal size in adults with generalized social phobia. J Psychiatry Neurosci, 35(2), 126-131.
Javelot, H., Spadazzi, A., Weiner, L., Garcia, S., Gentili, C., Kosel, M., & Bertschy, G. (2014). Telemonitoring with respect to mood disorders and information and communication technologies: overview and presentation of the PSYCHE project. Biomed Res Int, 2014, 104658. doi: 10.1155/2014/104658
Karavidas, M. K., Lehrer, P. M., Vaschillo, E., Vaschillo, B., Marin, H., Buyske, S., . . . Hassett, A. (2007). Preliminary results of an open label study of heart rate variability biofeedback for the treatment of major depression. Appl Psychophysiol Biofeedback, 32(1), 19-30. doi: 10.1007/s10484-006-9029-z
Kemp, A. H., Quintana, D. S., Gray, M. A., Felmingham, K. L., Brown, K., & Gatt, J. M. (2010). Impact of depression and antidepressant treatment on heart rate variability: a review and meta-analysis. Biol Psychiatry, 67(11), 1067-1074. doi: 10.1016/j.biopsych.2009.12.012
Kemp, A. H., Quintana, D. S., Quinn, C. R., Hopkinson, P., & Harris, A. W. (2014). Major depressive disorder with melancholia displays robust alterations in resting state heart rate and its variability: implications for future morbidity and mortality. Front Psychol, 5, 1387. doi: 10.3389/fpsyg.2014.01387
Leistedt, S. J.-J., Linkowski, P., Lanquart, J.-P., Mietus, J. E., Davis, R. B., Goldberger, A. L., & Costa, M. D. (2011). Decreased neuroautonomic complexity in men during an acute major depressive episode: analysis of heart rate dynamics. Transl Psychiatry, 1, e27. doi: 10.1038/tp.2011.23
Liang, C. S., Lee, J. F., Chen, C. C., & Chang, Y. C. (2015). Reactive heart rate variability in male patients with first-episode major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry, 56, 52-57. doi: 10.1016/j.pnpbp.2014.08.004
Lieblich, S. M., Castle, D. J., Pantelis, C., Hopwood, M., Young, A. H., & Everall, I. P. (2015). High heterogeneity and low reliability in the diagnosis of major depression will impair the development of new drugs. BJPsych Open, 1(2), e5-e7.
Maalouf, F. T., Clark, L., Tavitian, L., Sahakian, B. J., Brent, D., & Phillips, M. L. (2012). Bias to negative emotions: a depression state-dependent marker in adolescent major depressive disorder. Psychiatry Res, 198(1), 28-33. doi: 10.1016/j.psychres.2012.01.030
McClintock, S. M., Husain, M. M., Greer, T. L., & Cullum, C. M. (2010). Association between depression severity and neurocognitive function in major depressive disorder: a review and synthesis. Neuropsychology, 24(1), 9-34.
Mokros, H. B. (1993). Communication and psychiatric diagnosis: Tales of depressive moods from two contexts. Health Communication, 5(2), 113-127.
Muller, V. I., Cieslik, E. C., Serbanescu, I., Laird, A. R., Fox, P. T., & Eickhoff, S. B. (2017). Altered Brain Activity in Unipolar Depression Revisited: Meta-analyses of Neuroimaging Studies. JAMA Psychiatry, 74(1), 47-55. doi: 10.1001/jamapsychiatry.2016.2783
Murray, C. J., & Lopez, A. D. (1997). Alternative projections of mortality and disability by cause 1990-2020: Global Burden of Disease Study. Lancet, 349(9064), 1498-1504. doi: 10.1016/s0140-6736(96)07492-2
Neacsiu, A. D., Smith, M., & Fang, C. M. (2017). Challenging assumptions from emotion dysregulation psychological treatments. J Affect Disord, 219, 72-79. doi: 10.1016/j.jad.2017.05.016
Nelson, M. D., & Tumpap, A. M. (2017). Posttraumatic stress disorder symptom severity is associated with left hippocampal volume reduction: a meta-analytic study. CNS Spectr, 22(4), 363-372. doi: 10.1017/s1092852916000833
Park, S. C., Kim, J. M., Jun, T. Y., Lee, M. S., Kim, J. B., Yim, H. W., & Park, Y. C. (2017). How many different symptom combinations fulfil the diagnostic criteria for major depressive disorder? Results from the CRESCEND study. Nord J Psychiatry, 71(3), 217-222. doi: 10.1080/08039488.2016.1265584
Peeters, F., Nicolson, N. A., Berkhof, J., Delespaul, P., & deVries, M. (2003). Effects of daily events on mood states in major depressive disorder. J Abnorm Psychol, 112(2), 203-211.
Penninx, B. W. (2016). Depression and cardiovascular disease: Epidemiological evidence on their linking mechanisms. Neurosci Biobehav Rev. doi: 10.1016/j.neubiorev.2016.07.003
Price, R. B., Gates, K., Kraynak, T. E., Thase, M. E., & Siegle, G. J. (2017). Data-Driven Subgroups in Depression Derived from Directed Functional Connectivity Paths at Rest. Neuropsychopharmacology. doi: 10.1038/npp.2017.97
Rahman, F., Pechnik, S., Gross, D., Sewell, L., & Goldstein, D. S. (2011). Low frequency power of heart rate variability reflects baroreflex function, not cardiac sympathetic innervation. Clinical Autonomic Research, 21(3), 133-141.
Regier, D. A., Narrow, W. E., Clarke, D. E., Kraemer, H. C., Kuramoto, S. J., Kuhl, E. A., & Kupfer, D. J. (2013). DSM-5 field trials in the United States and Canada, Part II: test-retest reliability of selected categorical diagnoses. Am J Psychiatry, 170(1), 59-70. doi: 10.1176/appi.ajp.2012.12070999
Rodgers, S., Vandeleur, C. L., Ajdacic-Gross, V., Aleksandrowicz, A. A., Strippoli, M. F., Castelao, E., . . . Preisig, M. (2016). Tracing the associations between sex, the atypical and the combined atypical-melancholic depression subtypes: A path analysis. J Affect Disord, 190, 807-818. doi: 10.1016/j.jad.2015.10.067
Saunders, B., & Jentzsch, I. (2014). Reactive and proactive control adjustments under increased depressive symptoms: insights from the classic and emotional-face Stroop task. Q J Exp Psychol (Hove), 67(5), 884-898. doi: 10.1080/17470218.2013.836235
Taylor, J. M., & Whalen, P. J. (2015). Neuroimaging and Anxiety: the Neural Substrates of Pathological and Non-pathological Anxiety. Curr Psychiatry Rep, 17(6), 49. doi: 10.1007/s11920-015-0586-9
Ten Have, M., Lamers, F., Wardenaar, K., Beekman, A., de Jonge, P., van Dorsselaer, S., . . . de Graaf, R. (2016). The identification of symptom-based subtypes of depression: A nationally representative cohort study. Journal of Affective Disorders, 190, 395-406.
Thayer, J. F., Ahs, F., Fredrikson, M., Sollers, J. J., 3rd, & Wager, T. D. (2012). A meta-analysis of heart rate variability and neuroimaging studies: implications for heart rate variability as a marker of stress and health. Neurosci Biobehav Rev, 36(2), 747-756. doi: 10.1016/j.neubiorev.2011.11.009
Valenza, G., Gentili, C., Lanata, A., & Scilingo, E. P. (2013). Mood recognition in bipolar patients through the PSYCHE platform: preliminary evaluations and perspectives. Artif Intell Med, 57(1), 49-58. doi: 10.1016/j.artmed.2012.12.001
Veltman, E. M., Lamers, F., Comijs, H. C., de Waal, M. W. M., Stek, M. L., van der Mast, R. C., & Rhebergen, D. (2017). Depressive subtypes in an elderly cohort identified using latent class analysis. Journal of Affective Disorders, 218, 123-130.
Vythilingam, M., Vermetten, E., Anderson, G. M., Luckenbaugh, D., Anderson, E. R., Snow, J., . . . Bremner, J. D. (2004). Hippocampal volume, memory, and cortisol status in major depressive disorder: effects of treatment. Biol Psychiatry, 56(2), 101-112. doi: 10.1016/j.biopsych.2004.04.002
Wampold, B. E. (2015). How important are the common factors in psychotherapy? An update. World Psychiatry, 14(3), 270-277. doi: 10.1002/wps.20238
Williams, L. M., Goldstein-Piekarski, A. N., Chowdhry, N., Grisanzio, K. A., Haug, N. A., Samara, Z., . . . Yesavage, J. (2016). Developing a clinical translational neuroscience taxonomy for anxiety and mood disorder: protocol for the baseline-follow up Research domain criteria Anxiety and Depression (“RAD”) project. BMC Psychiatry, 16, 68. doi: 10.1186/s12888-016-0771-3
Yang, A. C., & Tsai, S.-J. (2013). Is mental illness complex? From behavior to brain. Prog Neuropsychopharmacol Biol Psychiatry, 45, 253-257 %W 23089053 %U http://dx.doi.org/23089010.23081016/j.pnpbp.23082012.23089009.23089015.
Zeng, L. L., Shen, H., Liu, L., & Hu, D. (2014). Unsupervised classification of major depression using functional connectivity MRI. Hum Brain Mapp, 35(4), 1630-1641. doi: 10.1002/hbm.22278